
 203

S E S 2 0 1 2
E i g h t h S c i e n t i f i c C o n f e r e n c e w i t h I n t e r n a t i o n a l P a r t i c i p a t i o n

S P A C E , E C O L O G Y , S A F E T Y
4 – 6 December 2012, Sofia, Bulgaria

AN ADAPTIVE PARALLEL INTEGRATOR OF ORDINARY DIFFERENTIAL
EQUATIONS SYSTEM FOR SPACE EXPERIMENT SIMULATION

Atanas Atanassov

Space Research and Technology Institute -– Bulgarian Academy of Sciences

e-mail: At_M_Atanassov@yahoo.com

Keywords and phrases: ordinary differential equation system integration, parallel algorithms

Abstract: A version of parallel ordinary equations system integrator for multi-satellites missions’
simulation is presented. The integrator is based on different order Runge-Kutta-Fehlberg schemes. An optimal
scheme is selected for every integration step for achieving necessary local error which improves calculation
effectiveness. An integration of differential equation systems is executed simultaneous in the time with constant
step. An integration with variable step in the frame of one system time step is applied if the maximum order
calculation scheme is not enough for achieving the necessary local accuracy. A possibility for determination of the
motion of every object (satellite, space debris, charged particles) based on individual propagation model of forces
is realized. That approach allows simultaneously solving of different classes mechanical and electro-dynamical
problems by proposed integrator.

Introduction

Satellites with different orbits are used in some scientific experiments. In these cases
propagation models are different on different parts of the orbits. Atmosphere drag and high harmonics
of gravity field is significant on low parts of the orbits and decreas on large distance. The basic
components of Earth gravity field remain significant on larger distance and influence from the Moon
and the Sun could be added. The application of the same perturbation model for all objects on
different part of orbits is inefficient when motion equations are integrated simultaneously. This is
especially significant by using some calculation time consuming atmosphere models.

Satellite experiments simulation can demand solving of motion equation for different kind of
objects. Such objects beside satellite are charged particles (electrons, protons, ions), charged dust
particles, space debris. The right hand of SODE which describe its motions can contain different
functions describing forces with different nature.

Different aspects of parallel integration of SODE about satellite motion are explained in [1-8].

В настоящата работа се представя вариант на интегратор на СОДУ основно за нуждите
на имитационното моделиране.

Multi body ODES integrator

Specialized SODE integrator for Earth satellite propagation was proposed [9]. Computer code
was developed for requirements of simulations. A motion of N objects is integrated with constant step
∆t in the time and a choice of optimal calculation scheme. The next step of development of the
integrator was a parallel version based on calculation threads [10].The integration of the motion
equations for different satellites was based on equal perturbation forces model.

New improved version of the integrator is presented in this work. The integrator has possibilities
for simultaneous solving of different classes of problems with different dimension and perturbation
forces.

Figure 1 shows the possibilities integrator to be applied for solving different classes of problem
in the frame of one simulation model.

Integrator initialization

The initialization of the integrator is made by subroutine InitIntegrator (fig. 2). Initialization of
the integrator consist in creation of a number of threads (according the value of formal parameter
num_threads which is determined in parent routine), events for beginning and ending of calculations

 204

S
im

ul
at

io
n

m
od

el

S
at

el
li

te
s

tr
aj

ec
to

ri
es

In
it

T
hr

ea
ds

S

at
el

lit
e

in
te

gr
at

or
 2

t =
 t

+
 d

t S
at

_k

S
at

_2

S
at

_1

S
at

el
li

te
s

tr
aj

ec
to

ri
es

In
it

T
hr

ea
ds

S

at
el

lit
e

in
te

gr
at

or
 1

t =
 t

+
 d

t S
at

_n

S
at

_2

S
at

_1

pr
kf

0a

pr
kf

2a

pr
kf

4a

pr
kf

6a

pr
kf

8a

R
K

F
A

sd

In
te

gr
at

or

S
at

el
li

te
s

In
te

gr
at

or
 2

pe
rt

ur
ba

ti
on

s

Thread 2

pr
kf

0a

pr
kf

2a

pr
kf

4a

pr
kf

6a

pr
kf

8a

R
K

F
A

sd

In
te

gr
at

or

S
at

el
li

te
s

In
te

gr
at

or
 2

pe
rt

ur
ba

ti
on

s

Thread 1

pr
kf

0a

pr
kf

2a

pr
kf

4a

pr
kf

6a

pr
kf

8a

R
K

F
A

sd

In
te

gr
at

or

S
at

el
li

te
s

In
te

gr
at

or
 1

pe
rt

ur
ba

ti
on

s

Thread 2
pr

kf
0a

pr

kf
2a

pr

kf
4a

pr

kf
6a

pr

kf
8a

R
K

F
A

sd

In
te

gr
at

or

S
at

el
li

te
s

In
te

gr
at

or
 1

pe
rt

ur
ba

ti
on

s

Thread 1

pr
kf

0a

pr
kf

2a

pr
kf

4a

pr
kf

6a

pr
kf

8a

R
K

F
A

sd

In
te

gr
at

or

P
ar

ti
cl

es

In
te

gr
at

or

E
, B

fo

rc
es

.

Thread 2

pr
kf

0a

pr
kf

2a

pr
kf

4a

pr
kf

6a

pr
kf

8a

R
K

F
A

sd

In
te

gr
at

or

P
ar

ti
cl

es

In
te

gr
at

or

E
, B

fo

rc
es

.

Thread 1

F
ig

ur
e

1.
 L

o
gi

ca
l s

ch
em

e
of

 th
e

in
te

gr
at

or
 a

n
d

re
la

tio
ns

 in
 th

e
fr

am
e

of
 e

nt
ir

e
si

m
ul

at
io

n
m

od
e

l.

 205

(ha_beg and ha_end) for every thread in interval ∆t and one additional event with handler ha_1, which
serve for synchronization between threads. The threads remain in suspended state after it's creation
to the moment when information necessary for SODE integration is prepared.

Fig. 2. Code of integrator initialization subroutine

The threads accept the name (address) of the basic integrator subroutine by variable

IntegratorName, described in operator external during of their creation.

The integrator is stopped by subroutine StopIntegrator after completing integration of SODE.
This subroutine terminates the existence of threads and events for their synchronization. The
integrator may be started again with other number of threads, objects and perturbation models which
determine their motion. The subroutine InitIntegrator can be called more than one time with equal or
different IntegratorName. Different simultaneous existing integrators could be initialized. The name of
integrator reflects specifics of solved SODE.

Adjustment of the integrator to specific problem

The SatelliteIntegrator is buffer subroutine with the purpose of adjusting the real SODE integrator
to features of solved problem. The SatelliteIntegrator name is contained in formal parameter
IntegratorName. It reflects the specifics of corresponding class problems which the integrator solves.
SatelliteIntegrator (or any other one on its place) is started as first subroutine from every initiated
thread when its state is changed to non-suspended in some moment from parent process. It transfers
different data addresses to integrator such as the name of subroutine where the right hands of the
solved systems are described. Different version of the integrator, every one for different classes
SODE, could be started.

The full information with general system character (handlers of events for threads
synchronization and threads parameters), as well as the special information about solving SODE
(addresses of data structures for initial conditions, perturbation forces) are transferred to integrators by
global data (common blocks) by means of short interface subroutines from type of SatelliteIntegrator.
If electro-dynamical problem is solving for example, instead previous SatelliteIntegrator other
subroutine with the same template, containing other subroutine describing right hand of differential
equation (pointed in the operator external) will be applied. The names of the common blocks will be
different but actual parameters of subroutine Integrator must be analogously as by SatelliteIntegrator.

Common block /chth/ transfer number of threads and handlers of events for synchronization.
Common block /cAdr_traekt/ transfer address of structure containing initial value for integration,
results, integration step, tolerances and global counter for objects. Common block /cMainExpDef/
transfer number of satellites (objects) and parameters describing models of perturbation forces.

SUBROUTINE InitIntegrator(IntegratorName, num_threads, thread_par, ha_1)
USE DFmt
 external IntegratorName
 integer num_threads, ha_1
 integer thread_par(4,num_threads)
 integer security/0/,stack/0/,thread_id,security1/0/, kkod/0/
 ha_1 = CreateEvent(security1,.false.,.true.,0)
 DO i=1,num_threads
 thread_par(2,i) = i
 thread_par(1,i) = CreateThread(security,stack,IntegratorName,LOC(thread_par(2,i)),&
 CREATE_SUSPENDED,thread_id)
 thread_par(3,i) = CreateEvent (security1,.false.,.true.,0)
 thread_par(4,i) = CreateEvent (security1,.true.,.false.,0)
 END DO
RETURN
ENTRY StopIntegrator(num_threads,thread_par)
 DO i=1,num_threads !numth
 kod= TerminateThread(thread_par(1,i),kkod)
 kod= CloseHandle(thread_par(1,i)) ! ha
 kod= CloseHandle(thread_par(3,i)) ! ha_beg
 kod= CloseHandle(thread_par(4,i)) ! ha_end
 END DO;
END SUBROUTINE InitIntegrator

 206

Fig. 3. Example of a code of buffer subroutine for adapting integrator to concrete problem

Each buffer subroutine finally calls the real SODE integrator (Fig.3).

The number of threads for every initiated integrator must be less than number of objects from
particular class. When the number of objects is higher than number of processor cores, then number
of the threads is normal to be less than objects for approaching effective of integration. Every
additional thread leads to increasing of overhead for synchronization.

Each free thread takes a next non-solved SODE. While one particular thread takes SODE, other
free threads do not participate in the choosing process even if they are finished their calculations. This
is guaranteed from signal event with handler ha_1, which is unique for every integrator and is created
by process of initialization (fig. 4).

Synchronization between parent program and integrator

For each step of system time on specific place in parent program (Fig. 5), the events for
beginning of calculations for each thread are set in signal state, which starts their work. The parent
program begins to wait treads to solve SODE for every object. The threads send signal for ‘end’ when
all of the SODE are solved. The parent program takes the coordinates and velocities of objects
determines for t=t0+dt and it is possible to start other calculations concerning interval t. After that it is
passing to next step from system time.

Conclusion and future work

Development of flexible parallel system ordinary differential equation integrator is presented.
The flexibility is concerned to optimal order of integration schemes selection as possibility for changing

SUBROUTINE SatelliteIntegrator(th_id_num)
 USE DFmt
 external pertur
 integer th_id_num
 integer thread_par(4,num_thrd), thread_par_local[AUTOMATIC](4)
!
 type general_data
 integer adr1, adr2 !
 real*8 time,dt
 end type general_data
 type (general_data) gen_data ! global data
 type (general_data), AUTOMATIC :: gen_data_loc ! local data
 character, AUTOMATIC :: izbor*1
!..
 integer thrd_par_adr,ha_1,ha_1l !thrd_hand_adr,
 common /chth/num_thrd,thrd_par_adr,ha_1 ! threads number
!...
 integer, AUTOMATIC :: adr_glb_count,adr1l,adr2l
 integer adr1,adr2,glb_counter ! handlers_address
 common /cAdr_traekt/adr1,adr2,glb_counter,numsa_
!___
 integer adr_Grv_model
 integer Main_adr_orb_data, Main_adr_Grv_model,len_Grv_model
 common /cMainExpDef/numsat,Main_adr_orb_data, Main_adr_Grv_model,len_Grv_model !
!___
 POINTER(thrd_par_adr, thread_par); POINTER(gen_data_adr,gen_data)

 adr_glb_count = LOC(glb_counter); adr1l= adr1; adr2l= adr2; ha_1l= ha_1; izbor= 'y'
 adr_Grv_model= Main_adr_Grv_model
 thread_par_local(:)= thread_par(:,th_id_num)

 CALL Integrator(th_id_num,num_thrd,pertur,adr_Grv_model,len_Grv_model,numsat, &
 thread_par_local,adr1l,adr2l,ha_1l,adr_glb_count,izbor)
END SUBROUTINE SatelliteIntegrator

 207

differential equations systems (depending of type of the problem solved), number of threads,
perturbation forces models, number of objects etc. Simultaneous running of more of one integrator is
possible. An approach for realization of SODE integrator based on threads and program codes are
shown.

SODE integrator is developed applying program language Fortran 95, Compaq Fortran
compiler and API function for multi-trading.

Fig. 4. Code of the government subroutine of the integrator

SUBROUTINE Integrator(th_id_num, num_threads, RHFun, adr, adr_len,numsat, thread_par, &
 adr1, adr2, ha_1, adr_glb_count, izbor)
USE DFmt
 external RHFun
 character izbor*1
 integer th_id_num,adr,adr_len,glb_counter,numsat
 integer, AUTOMATIC :: loc_counter,loc_adr

 integer thread_par(4)
 type general_data
 integer adr1, adr2 ! transfer_data address work_data address
 real*8 time,dt
 end type general_data
 type (general_data) gen_data
 type data
 real*8 t,dt
 real*8 xvn(6),xvk(6),eps(6)
 end type
 type (data) transfer_data(numsat)
 type work
 integer redmet,in !(6)!/6*0/
 real*8 gr(6,12),dt1
 end type work
 type (work) work_data(numsat),loc_work_data(numsat)
!
 integer adr1,adr2,m*2/6/ ! real*8 time
 integer address, ha_1, adr_glb_count
 integer, AUTOMATIC :: loc_ha_1, ha_beg,ha_end, kk
 POINTER(adr1,transfer_data); POINTER(adr2,work_data); POINTER(adr_glb_count,glb_counter)
 ha_beg= thread_par(3); ha_end= thread_par(4)
 loc_ha_1 = ha_1; loc_numsat= numsat;
a: DO WHILE(.true.)
 k= WaitForSingleObject(ha_beg,WAIT_INFINITE) ! Sabitie za puskane na thread-a
 kk= 0;
 DO WHILE(glb_counter.LT. numsat)
 k= WaitForSingleObject(loc_ha_1,WAIT_INFINITE)
 glb_counter= glb_counter + 1; ! za porednija spatnik-obekt
 loc_counter= glb_counter; ! i se zapomni v localna za thread-a pamet
 k= SetEvent(loc_ha_1)
 IF(loc_counter.GT. numsat) EXIT
 kk= kk + 1; loc_adr= adr + (loc_counter-1)*adr_len
 CALL rkfasd(loc_counter,m,transfer_data(loc_counter)%t ,transfer_data(loc_counter)%xvn, &
 transfer_data(loc_counter)%xvk,transfer_data(loc_counter)%dt, &
 transfer_data(loc_counter)%eps,RHFun, &
 work_data(loc_counter)%redmet ,work_data(loc_counter)%dt1, &
 work_data(loc_counter)%in, work_data(loc_counter)%gr, &
 izbor,th_id_num,loc_adr,adr_len)
 END DO b
 k= ResetEvent(ha_beg) ! Sabitie za spirane na thread-a
 k= SetEvent(ha_end) ! Sabitie za krai na stapkata dt v kojato thread-a uchastva
 END DO a
END SUBROUTINE Integrator

 208

The present integrator is part of program system for space experiments simulation which is
under development [10]. The effectiveness of the SODE integrator according to numbers of processor
cores, initialized threads and object will be evaluated.

Fig. 5. Fragment of parent thread subroutine code, which serve for
synchronization with threads of the integrator

References:

1. G e a r , C. W., The Potential for Parallelism in Ordinary Differential Equations, in Computational
Mathematics, ed. Simeon Fatunla, Boole Press, Dublin, pp33-48, 1987

2. J a c k s o n , K. R., A Survey of Parallel Numerical Methods for Initial Value Problems for Ordinary
Differential Equations, IEEE Transactions on Magnetics, 27 (1991), pp. 3792-3797.

3. S t o n e , L. C., S. B. Shukla, B. Neta, Parallel Satellite Orbit Prediction Using a Workstation Cluster,
International J. Computer and Mathematics with Applications, 28, (1994), 1–8.

4. N e t a , B., Parallel Solution of Initial Value Problems, Proc. Fourth International Colloquium on
Differential Equations, D. Bainov, V. Covachev, A. Dishliev (eds), Plovdiv, Bulgaria, 18-23 August 1993,
2, (1993), 19–42.

5. P h i p p s , W. E., B. N e t a, D. A. D a n i e l s o n, Parallelization of the Naval Space Surveillance
Satellite Motion Model, J. Astronautical Sciences, 41, (1993), 207–216.

6. N e t a , B., D. A. D a n i e l s o n, S. O s t r o m, S. K. B r e w e r, Performance of Analytic Orbit
Propagators on a Hypercube and a Workstation Cluster.

7. A r o r a , N., R u s s e l l, R. P., Fast, High-Fidelity, Multi-Spacecraft Trajectory Simulation for
Space Catalogue Applications, Paper S1.3, US-China Space Surveillance Technical Interchange,
Beijing, China, Oct. 17-21, 2011.

8. B u r r a g e, K., Parallel methods for systems of ordinary differential equations, SIAM News, v. 26, N 5, 1993.
9. A t a n a s s o v , A., Integration of the Equation of the Artificial Earth’s Satellites Motion with

Selection of Runge-Kutta-Fehlberg schemes of Optimum Precision Order., Aerospace Research in Bulgaria,
21, 24-34, 2007.

10. A t a n a s s o v , A., An Adaptive Parallel Integrator of Ordinary Differential Equationa System for
Space Experiment Simulation, Aerospace Research in Bulgaria, 22, pp. 59-67., 2008.

11. A t a n a s s o v , A ., Program System for Space Missions Simulation - First Stages of Projecting
and Realization, Proceedings of SES 2012, xxx-xxx.

SUBROUTINE traekt(num_sat,t,dt,xvn,xvk,eps)
 USE DFmt
 real*8 t,dt,xvn(6,num_sat),xvk(6,num_sat),eps(6,num_sat)
 common /cadr_traekt/adr1,adr2,glb_counter,numsat
… … …
 glb_counter= 0;
a: DO i=1,num_thrd
 k= SetEvent (ha_beg(i)) ! Events for start of threads
 END DO a
 k= WaitForMultipleObjects(num_thrd, ha_end,WaitAll,Wait_infinite)
b: DO i=1,num_thrd
 k= ResetEvent(ha_end(i)) ! Events for waiting ending of threads
 END DO b
… … …
END SUBROUTINE traekt

